ADINA ALKALOIDS: 10- β -D-GLUCOSYLOXYVINCOSIDE LACTAM .

R. T. Brown and W. P. Blackstock

Department of Chemistry, The University, Manchester M13 9PL.

(Received in UK 5 June 1972; accepted for publication 16 June 1972)

From fresh shoots of <u>Adina rubescens</u>¹ we have obtained a new glycosidic alkaloid (1a), characterised as the acetate (1b) $C_{48}H_{56}N_2O_{12}$ [α]_D²⁵ -86⁰ (CHCl₃). On the basis of colour reactions and spectral data it was thought to be related to vincoside lactam (1c) which also occurs in the same Although the UV spectrum $[\lambda_{max}, 231, 273 \text{ (inf.) } 294 \text{ (inf.) } 310 \text{ (inf.)]}$ was not immediately plant. informative, IR bands at 1655 and 1600 cm.⁻¹ suggested a β -alkoxyacrylamide chromophore², and subtraction of its expected contribution [λ_{max} 240 nm] from the UV absorption left a spectrum $[\lambda_{max.} 287 \text{ nm}]$ very similar to that of 2, 3-dimethyl-5-methoxyindole $[\lambda_{max.} 284 \text{ nm}]$. The identity of the UV spectra of the acetate and the free glycoside, and the absence of any shift on addition of alkali indicated a phenolic ether. These conclusions were supported by the NMR spectrum with aromatic hydrogen signals at τ 2.55 (1H, d, J=2Hz), 2.81 (1H, d, J=9Hz) and 3.14 (1H, dd, J=1, 9Hz) attributable to H-9, 12 and 11 respectively; the acrylamide proton H-17 appeared at τ 2.90 as a doublet (J=2Hz) due to allylic coupling with H-15. Furthermore, the presence of two hexose functions was indicated by eight acetate peaks between τ 7.92 and 8.03, two protons at 6.24 (H-5, H-5), four at 5.80 (H₂-6 and H₂-6), and eight (H-1 - 4, H-1 - 4) between $\tau 4.5$ and 5.4 in addition to H-21 and three olefinic hydrogens. This was confirmed by the mass spectrum where successive losses of two hexose tetraacetate fragments (330) from the molecular ion at m/e 1012 gave peaks at m/e 682 and 352 - transitions which were supported by mass measurement and the appropriate metastable peaks at 459.6 and 181.5.

The suspected presence of a vinyl group was substantiated by catalytic hydrogenation of the octaacetate to a dihydroderivative which was then deacetylated under Zemplen conditions to the free diglycoside (2a). Subsequent hydrolysis with β -glucosidase removed both sugar units, thereby establishing their identity, and gave a dihydroaglucone (2b), $C_{20}H_{22}N_2O_4$. In neutral solution this had a similar UV spectrum to the starting material, but on addition of alkali there was now a shift to λ_{max} . 326 nm.

At this point the evidence was consistent with the gross structure <u>la</u> but with undefined stereochemistry. Recently we reported⁴ that the C-3 configuration in lactams of this type could be established as in simpler cases⁵ from the sign of the Cotton effect between 250 and 300 nm in ORD and CD spectra. Since that of our compound was negative $[[\Theta]_{273}$ -25,000] the configuration of H-3 was β , as in vincoside lactam. In order to complete the structure determination a correlation was necessary with material synthesised from known compounds.

Condensation of secologanin acetate and 5-hydroxytryptamine (serotonin) in glacial acetic acid at 100° afforded the desired 3β isomer, 10-hydroxyvincoside lactam (1d), directly; subsequent acetylation gave the 10-acetoxy derivative (1e) M⁺724, λ_{max} . 232, 273, 286, 294 nm. This variation of the usual procedure ⁶ was convenient since the 3α condensation product did not lactamise under these conditions and was readily separated. Catalytic hydrogenation followed by Zemplen deacetylation afforded a dihydroglucoside (2a) which was hydrolysed by β -glucosidase to the dihydroaglucone (2b). This compound was indistinguishable from that obtained from the natural diglucoside; furthermore both samples were converted to identical mixtures of epimeric acetates (TLC, NMR, UV, CD and mass spectra). Since the stereochemistry of secologanin is known⁷ the complete structure of the diglucoside is consequently 1a.

References.

- 1. W. P. Blackstock, R. T. Brown and G. K. Lee, <u>Chem. Comm.</u>, 910, (1971); W. P. Blackstock and R. T. Brown, Tetrahedron Letters, 3727 (1971). We thank Miss G. K. Lee for obtaining the plant material.
- 2. K. Balenovic, H. V. Daniker, R. Goutarel, M.-M. Janot and V. Prelog, Helv., 35, 2519 (1952.
- 3. "Physical Data of Indole and Dihydroindole Alkaloids" Vol. II, Lilly Research Laboratories, Eli Lilly and Co.
- 4. W. P. Blackstock, R. T. Brown and C. L. Chapple, Chem. Comm. (1972) (in press).
- W. Klyne, R.J. Swan, N.J. Dastoor, A.A. Gorman and H. Schmid, <u>Helv.</u>, <u>50</u>, 115 (1966);
 C. M. Lee, W.F. Trager and A. H. Beckett, <u>Tetrahedron</u>, 23, 375 (1967).
- 6. A.R. Battersby, A.R. Burnett and P.G. Parsons, J. Chem. Soc. (C), 1193 (1969).

.

^{7.} Idem, ibid., 1187.